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Calculus	  101	  

Here, we explore the most basic procedures of calculus: derivatives and integrals. This branch of 
mathematics is both beautiful and essential to scientific literacy. 

Knowing how to differentiate and integrate is a survival skill for physicists. Calculus will not only help 
you pass exams and succeed in your careers, but it will also change your entire worldview. After 
learning calculus, you will appreciate the majesty of the universe more profoundly than ever before. 

Many of you will have already read some of this material in the Feynman Simplified series of 
eBooks. I hope some redundancy will not be unwelcome. For others who have not (yet) read 
Feynman Simplified, all of this may be new, exciting, and perhaps frightening. 

Do not expect to fully appreciate calculus after just one reading. Changing your worldview will take 
some time. For me, and for others I know, understanding seemed to come in one blinding flash. I 
vividly recall the moment I finally grasped the meaning of: How fast is a balloon expanding when it is 
10 cm wide? 

Enjoy this. 

Learning calculus is one of the great experiences of a scientific education. 

Thank you for sharing this experience with me. 

 

To find out about other eBooks in the Feynman Simplified series, click here. 

I welcome your comments and suggestions. Please contact me through my Website.  
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Chapter	  12	  
Derivatives	  

Derivatives describe rate of change. 

Since everything in the universe changes, derivatives are the foundation upon which science strives 
to describe all natural phenomena. 

To clarify “rate of change”, let’s consider an example familiar to almost everyone: riding in a car. 

Speed	  

Imagine that you are driving through the scenic Southwest U.S., when a policeman stops you and 
says: “You were speeding, doing 60 miles per hour (mph) in a 55 mph zone.” 

Your feeble defense is that you could not have been going 60 miles per hour because you were 
driving for only 10 minutes, not a whole hour, and have only traveled 10 miles. He replies that at the 
rate you were going you would have gone 60 miles in one hour. But that is impossible, you say, 
because the road ends in another 15 miles. He retorts that your speed was 1 mile per minute, which 
is the same as 60 mph. You ask if there is a law in Arizona that prohibits driving 1 mile in one minute? 

You are not talking your way out of a citation, but it is interesting to ponder: what exactly does “a 
speed of 60 miles per hour” really mean? 

Speed is distance traveled divided by travel time. It does seem more sensible to average a car’s 
speed over minutes rather than hours. To describe your speed while passing another car, one should 
average over an even shorter time interval, such as one second. 

Averaging over one second might be good enough for a car, but what about a ball falling from a great 
height? It turns out, 10 seconds after being dropped, the ball’s speed is 98 meters per second (m/s), 
and one second later, its speed increases to 106 m/s. Since that is a substantial change, we should 
probably compute its speed over an interval even less than one second. (I switched to metric units, 
the units scientists use.) 

The ultimate answer is to define speed in terms of the infinitesimal distance traveled during an 
infinitesimal time interval. This concept, developed independently by Isaac Newton and Gottfried 
Leibniz, is the basis of differential calculus, the first “new math.” 

Limits	  

By convention, we use the symbol ds to represent an infinitesimal change in distance and dt for an 
infinitesimal change in time. Calculus provides a precise definition of speed that we denote with the 
letter v: 



 

This equation reads: v equals the limit of the ratio (ds/dt) as dt goes to zero. 

Well-behaved ratios come closer and closer to a final value of v as we compute the ratio for smaller 
and smaller time intervals dt. The value v is the asymptotic limit of the ratio (ds/dt). 

Not all ratios are well-behaved. The ratio 1/x is not well-behaved as x approaches 0, because it gets 
ever-larger and is infinite at x=0. But the ratio (sinx)/x is well-behaved as x approaches 0, because 
the numerator and denominator both approach 0 at the same rate. Let’s look at some values. 

   x sin(x)/x 

1.00 0.8415 
0.50 0.9589 
0.25 0.9896 
0.10 0.9983 
0.03 0.99985 
0.01 0.99998 

For x>0 (x greater than zero), sin(x)/x gets closer and closer to 1 as x approaches zero, hence its limit 
equals 1. 

(As a side note: in almost all of physics, angles in equations are measured in radians, not in degrees.) 

Let’s consider another example of this concept of limits: what is the speed of a falling ball 8 seconds 
after its release? 

We will employ the customary equation relating distance s and time t for a falling body near Earth’s 
surface, ignoring air resistance. That equation is: 

s(t) = g t2 /2  

Here, g is the acceleration of gravity (9.8 m/sec2), and s(t) denotes the distance s at time t, 
emphasizing that s is a function of t. We compare the distance s at time t with the distance at the 
infinitesimally later time t+dt. 

s(t+dt) = g (t+dt)2 /2 

The infinitesimal distance traveled, ds, is the change in distance. 

ds = s(t+dt) – s(t) 
ds = g [ (t+dt)2 – t2 ]/2 
ds = g [ t2 + 2t dt + dt2 – t2 ]/2 
ds = g [ 2t dt + dt2 ]/2 
ds/dt = g [2t + dt]/2 

Now, we take advantage of dt being extremely small, dt << 1 (“<<” means much less than). We can 
discard the dt term in the [ ]’s in the last equation because dt << 2t. Now, we can compute the speed 



as a function of time, v(t), and evaluate it at t = 8 sec: 

v(t) = ds/dt  = g [2t] /2 
v(t) = g t 
v(8 sec) = [9.8 m/sec2] [8 sec] = 78 m/sec 

Differentiation	  

The procedure performed above on s(t) is called differentiation or more specifically taking the 
derivative of s with respect to t. Differentiation is important enough to merit an entire symbology: dq is 
not d times q, but is rather a single symbol denoting a differential, a tiny increment of the variable q or 
a tiny range of values of q. 

The d-symbology applies to any variable q, but coordinate differentials — such as dt, dx, dy, dz — are 
the most common. The expression ds/dt is the ratio of two differentials, and is called the derivative of 
s with respect to t. 

The two d’s in ds/dt do not cancel one another to leave s/t; ds/dt and s/t are entirely different 
expressions. 

Any normal function or equation of physics can be differentiated. To differentiate X with respect to z, 
compute 

 dX/dz = [ X(z+dz) – X(z) ] / dz 

and allow dz to become infinitesimal (take the limit as dz goes to zero). 

Derivatives	  as	  Slopes	  

Derivatives have graphic significance. If we plot a function, such as y(x) = sinx shown in Figure 6-4, 
the derivative at each value of x is the slope of sinx at that x.  

 

Figure 1-1 y(x) = sin(x) 

At two of the points indicated by black dots, the derivative, dsin(x)/dx, equals 0; here the slope of sinx 
is also zero as shown by the horizontal tangent lines. 

At x=0, Δy and Δx are indicated by dashed lines. We see that for a substantial value of Δx, the ratio 



Δy/Δx, the slanted dashed line, differs from the tangent line at x=0. We show below that Δy/Δx comes 
closer and closer to the true derivative as Δx gets closer and closer to zero. 

The sine function can be expressed as an infinite series of which the first three terms are: 

sin(x) = x – x3/3! + x5/5! – …. 

where n! = n factorial = 1 × 2 × 3 × … × n 

We can rewrite that as: 

sin(x) = x {1 – x2/6 + x4/120 –…. } 

The derivative at x=0 is the limit as Δx goes to zero of: 

dsin(0)/dx = { sin(Δx) – sin(0) } / Δx  
dsin(0)/dx = sin(Δx) / Δx 
dsin(0)/dx = Δx{1 –Δx2/6 +Δx4/120 –….}/Δx   
dsin(0)/dx = 1 –Δx2/6 +Δx4/120 –….  

We see that for moderate values of Δx, the right side of the last equation is less than 1, but that as Δx 
goes to zero, Δx2 and higher order terms become negligible, and the expression approaches 1, the 
true derivative. 

The maxima and minima of any function are always at points at which its derivative is zero. 

Now, we will step this up a notch, and consider acceleration a, the derivative of speed with respect to 
time. Continuing from above: 

v(t) =  g t  
v(t+dt) = g [t+dt] 
dv = v(t+dt) – v(t) 
dv = g [t+dt – t] 
a = dv/dt = g = 9.8m/sec2  

Since acceleration is the derivative of speed, and speed is the derivative of distance, we say 
acceleration is the second derivative of distance. Here, “second” means we differentiate twice. Note 
the symbology denoting the second derivative of s with respect to t: 

a = dv/dt = d2s/dt2 

First derivatives, like ds/dt, are ubiquitous in physics, and we often omit the word “first.” Second 
derivatives, like d2s/dt2, are less common. Third and higher order derivatives are rare. The third 
derivative of distance, d3s/dt3, is called jerk. 

If your car speeds up with constant acceleration, you will be pressed back in your seat but will not be 
unduly uncomfortable. But if the driver alternately floors and releases the gas pedal, the resulting 
acceleration changes will toss you back and forth, which is very uncomfortable. That discomfort is 
due to jerk. Smooth rides are all about minimizing jerk. 



General	  Rules	  of	  Differentiation	  

Differentiation is a linear operation that obeys these rules: 

For any constant a and variable q: 

da/dq = 0  

For any functions F & G, constants a & b, and variable q: 

d(aF+bG)/dq = a dF/dq + b dG/dq 

d(FG)/dq = G dF/dq + F dG/dq  

d(FG)/dq = d(GF)/dq 

d(F/G)/dq = (1/G)dF/dq – (F/G2)dG/dq  

d(Fn)/dq = n Fn–1 dF/dq 

Derivatives	  of	  Common	  Functions	  

Here, we list the derivatives of the most common functions of physics: polynomials, trig functions, and 
exponentials. In the following sections, we show the derivations of each derivative. Learning requires 
practice, so if this material is new to you, study the derivations carefully and then try some on your 
own. 

xn : dxn/dt = n xn–1 dx/dt  

sin(x) :  d sin(x) / dt = + cos(x) dx/dt   

cos(x) : d cos(x) / dt = – sin(x) dx/dt   

ex  : d ex  / dt = ex dx/dt  

ln(x) : d ln(x) / dt = (1/x) dx/dt  

Proof	  of	  General	  Rules	  

We prove here the general rules for derivatives that are summarized above. 

For brevity, I will write “P=>Q” to denote “in the limit that P goes to Q”. 

The definition of the derivative of F with respect to q is: 

as dq=>0: dF/dq = { F(q+dq) – F(q) } /dq 

Hence, 

F(q+dq) = F(q) + dq dF/dq  



Also for brevity, F and G will mean F(q) and G(q). 

d(aF+bG)/dq  

 = { aF(q+dq) – aF + bG(q+dq) – bG}/dq 

 = { aF + dq a dF/dq – aF 
 + bG + dq b dG/dq – bG }/dq 

 = a dF/dq +  b dG/dq  

 

d(FG)/dq = { F(q+dq)G(q+dq) – FG}/dq 

 
 = { [F + dq dF/dq] [G + dq dG/dq] – FG}/dq 

 = { FG + dq G dF/dq + dq dG/dq  
 + dq2 dF/dq dG/dq– FG}/dq 

As dq=>0, we can drop terms of order dq2, yielding: 

 = { dq G dF/dq + dq F dG/dq }/dq 

 = G dF/dq + F dG/dq  

 

d(GF)/dq = { G(q+dq)F(q+dq) – GF}/dq 

d(GF)/dq = { F(q+dq)G(q+dq) – FG}/dq 

d(GF)/dq = d(FG)/dq 

 

d(F/G)/dq = { F(q+dq) / G(q+dq) – F/G}/dq 

 = { [F + dq dF/dq] / [G + dq dG/dq] – F/G}/dq 

 = { [F + dq dF/dq]G –  F[G + dq dG/dq] } 
 / { [G + dq dG/dq] G dq} 

As dq=>0, the denominator goes to G2 dq. 

= { FG + dq G dF/dq – FG – dq F dG/dq } 
 / { G2 dq} 

 = (1/G) dF/dq – (F/G2) dG/dq  

 



d(Fn)/dq = {Fn(q+dq) – Fn}/dq 

 = { (F + dq dF/dq)n – Fn}/dq 

Keeping only the lowest order terms in dq yields: 

 = { (Fn + n dq Fn–1 dF/dq) – Fn}/dq 

 = n Fn–1 dF/dq 

Derivative	  of	  xn	  	  

dxn/dx = limit dx=>0 { [(x+dx)n – xn ] / dx} 

First, let’s expand (x+dx)n. 

(x+dx)n = (x+dx) × (x+dx) × … (x+dx) 

Here, there are n terms in the product on the right. This is called a binomial expansion. In evaluating 
the right hand side, one chooses one of the two terms (x or dx) in each parentheses, and multiplies all 
those together. That product constitutes one of the 2n terms that must be summed to include every 
combination of one term from each of the n parentheses. 

Included in the 2n terms are products with dx raised to the k power, for k from 0 to n. The number of 
product terms containing k factors of dx is the same as the number of combinations for picking k 
items from a list of n items, which is: 

n! / k! (n–k)! 

This means we can rewrite the right hand side of the prior equation as: 

(x+dx)n = Σk {xn–k dxk n! / k! (n–k)! } 

Here, Σk represents the sum over all values of k from k=0 to k=n. Dropping all terms of order dx2 and 
higher reduces the sum to:   

(x+dx)n = xn + nxn–1dx + smaller terms 

We now put that into the derivative equation. 

dxn/dx = limit dx => 0 { [(x+dx)n – xn ] / dx} 

= { [xn + nxn–1dx – xn] /dx} 

dxn/dx = nxn–1  

dxn/dx (dx/dt) = nxn–1 (dx/dt) 

dxn/dt = nxn–1 dx/dt 

This result is valid even if n is not an integer, as we prove later. 



Derivatives	  of	  Sine	  &	  Cosine	  

Recall the trig relations: 

 sin(A+B) = sin(A) cos(B) + sin(B) cos(A) 
cos(A+B) = cos(A) cos(B) – sin(B) sin(A) 

d sin(x) / dx = lim {sin(x+dx) – sin(x) } / dx 

sin(x+dx) = sin(x) cos(dx) + sin(dx) cos(x)  

As dx=>0, cos(dx)=>1 and sin(dx)=>dx. Hence, as dx=>0: 

sin(x+dx)–sin(x) => sin(x)+dx cos(x) – sin(x) 
sin(x+dx)–sin(x) => dx cos(x) 

d sin(x) / dx = cos(x) 

Now for the cosine: 

d cos(x) / dx = lim {cos(x+dx) – cos(x) } / dx 

cos(x+dx) = cos(x) cos(dx) – sin(dx) sin(x) 

As dx=>0, cos(dx)=>1 and sin(dx)=>dx. Hence: 

cos(x+dx) => cos(x) – dx sin(x) 
cos(x+dx) – cos(x) => – dx sin(x) 

d cos(x) / dx =  – sin(x)  

Derivative	  of	  ex	  	  

The definition of e is: 

e = limit n=>∞ of (1+1/n)n  

ex = exp(x) = lim n=>∞ (1+1/n)xn  

Since exponents in physics can sometimes be quite elaborate, I often use exp{x} instead to ex to 
improve eBook readability. 

We now evaluate (1+1/n)xn using the binomial expansion. The terms with the smallest powers of the 
infinitesimal quantity 1/n are: 

exp(x) = 1 + (xn)(1/n) + (xn)(xn–1)/2n2  
 + (xn)(xn–1)(xn–2)/3!n3 + …  

As xn=>∞, this becomes: 

exp(x) = 1 + x + x2/2 + x3/3! + x4/4! + …  



d exp(x) / dx = 0 + 1 + 2x/2 + 3x2/3! + 4x3/4! + …  

d exp(x) / dx = 1 + x + x2/2 + x3/3! + …  

d exp(x) / dx = exp(x) 

Derivative	  of	  Natural	  Logarithm	  

By definition of the natural logarithm ln: 

x = exp( ln[x] ) 

Taking derivative of both sides with respect to x yields: 

dx/dx = exp(ln[x]) d( ln[x] )/dx  

1 = x d( ln[x] )/dx   

d( ln[x] )/dx = 1 / x 

Derivative	  of	  	  xa	  	  	  

For any x and constant a: 

d (xa) /dx = d ( exp{ a ln[x] } ) /dx 

 = (exp{ a ln[x] }) d( a ln[x] )/dx 

 = (xa) a/x = a xa–1   

 

. 

  



Chapter	  13	  
Integrals	  

Just as addition is the inverse of subtraction, integration is the inverse of differentiation. If the 
derivative of X equals Y, then the integral of Y equals X — well almost. Since the derivative of any 
constant is zero, a more precise statement is: 

If the derivative of (X + any constant) = Y,  
then the integral of Y = X + any constant 

Generally, the so-called arbitrary constant of integration is determined by initial conditions, as we 
shall see. 

Integrals solve problems that are the reverse of the problems that derivatives solve. 

For example, we know from above that the equation for the speed of a falling ball at time t is: 

v(t) = g t, with g = 9.8 m/sec2  

Let’s now ask: how far has the ball dropped at time t? Since the ball’s speed is continuously 
changing, we cannot solve this problem with geometry or algebra. The only way to solve it is with 
integral calculus. (Integral and differential are the two main branches of calculus.) 

Here is how it works. We learned above that ds(t)/dt = v(t). This means: 

ds(t) = v(t) dt  

This equation reads: (the infinitesimal distance traveled at time t) equals (the ball’s speed at time t) × 
(the infinitesimal time interval during which this change occurs). So, what we need to do is add up all 
those infinitesimal ds’s. That is what integration does. 

To obtain a precise result, we again need to take the limit as dt goes to zero. We perform that sum by 
integration, using the symbol ∫, an enlarged S derived from the Latin word summa. The general 
equation for finding the distance s travels from a changing but known speed v(t) is: 

s(t) = ∫ ds(t) = ∫ v(t) dt 

For the case of a falling ball:  

s(t) = ∫ g t dt = g t2 /2 + C 

The arbitrary integration constant C represents our arbitrary choice in defining the location of s=0. 
The equation says the ball will accelerate with the same time dependence from any initial height; in a 
specific situation, we set that initial height with C. Here, we choose s=0 at time t=0. 

We know the value of the above integral because we found above that the derivative of t2 equals 2t, 
thus the integral of t equals t2/2. To find out how far the ball has moved between time A and time B, 
we use the above equation to compute s(B) – s(A), as follows: 



s(B) – s(A) = g [B2 – A2] /2 

For example, the distance fallen between t = 4 seconds to t = 8 seconds equals: 

4.9 m/sec2 [64 sec2 – 16 sec2] = 235 m 

Integrals, like derivatives, have graphic significance. Figure 2-1 shows a plot of the speed of a falling 
ball versus time, with the dotted line representing the equation: v(t) = g t.  

 

Figure 2-1 Plot of Velocity versus Time 

The two shaded rectangles have heights of v(4sec) and v(6sec), and both have widths of 2 seconds. 
Since distance is speed × time, the area of each rectangle has units of meters/sec × sec = meters. 
The total area covered by both rectangles is: 

Area = v(4sec)×2sec + v(6sec)×2sec  

Area = (g×4sec)×2sec + (g×6sec)×2sec  

Area = 9.8 m×(8+12) = 196 m 

This total area of 196 m is a rough approximation to the distance the ball actually traveled between 4 
and 8 seconds, which we calculated above to be 235m. The area is only approximate because the 
two rectangles do not cover the entire region under the line. The ball’s velocity changes substantially 
during 2 seconds, leaving gaps above the rectangles.  We could do better using shorter time 
intervals. With 4 rectangles each 1 second wide, the total area covered would be:  

Area = [v(4)+v(5)+v(6)+v(7)]×1sec 

Area = g×[4+5+6+7]×1 

Area = 9.8 × 22 = 216 m 

We are getting closer. Clearly the thing to do is to use an infinitesimal time interval dt, as shown in 
Figure 2-2.  



 

Figure 2-2 Shaded Area = Definite Integral 

The shaded area under the line is the sum of an extremely large number of extremely thin rectangles, 
each of width Δt, which we can label n = 1, 2, 3, … We can now write: 

Area = sum of v(tn) × Δt 

Here, the sum is over all values of n 

If we let n go to infinity, which means letting Δt go to zero, the sum of the areas of all the rectangles 
becomes the integral we previously calculated. 

s(t) = ∫ v(t) dt 

We see that integrals correspond to areas “under the curve” of a function, whereas derivatives 
correspond to the slope of that curve.  

There are two types of integrals that are closely related. The above integral is called an indefinite 
integral: we integrate the function v(t) with respect to t, and get another function s(t), which like any 
normal function has a value at each value of t. 

As you may have guessed, the other type of integral is called a definite integral. Here we select two 
values of t, A and B, and the definite integral yields the area under the curve between t=A and t=B. 
The definite integral is typically written: 

s(B) – s(A) = ∫AB v(t) dt 

In the example in Figure 2-2, the definite integral from t = 4 sec to t = 8 sec is the shaded area under 
the curve, which we compute with the definite integral as follows: 

∫AB v(t) dt = s(B) – s(A) 
 = {∫v(t)dt evaluated at t=B} 
 – {∫v(t)dt evaluated at t=A} 

∫48 v(t) dt = s(8) – s(4) 
 = g {t2 evaluated at t=8} /2 
 – g {t2 evaluated at t=4} /2 

 = (4.9 m/sec2) {64 sec2 – 16 sec2} 



 = 4.9 m {48} = 235 m 

Which equals what we calculated above for the distance traveled between t = 4 sec and t = 8 sec. 

The result of every indefinite integral includes an arbitrary constant. The result of every definite 
integral has no arbitrary constant; the constant is the same at the limits A and B, and therefore 
cancels.  

We described earlier the procedure to differentiate any expression. Unfortunately, there is no 
corresponding general procedure for integration. We learn how to do integrals with a haphazard 
reverse process: if we know that B is the derivative of A, then we know that A is the integral of B. 

Mathematicians have differentiated a vast menagerie of functions and tabulated their results. If we 
want the integral of B, we search these tables hoping to find B listed as the derivative of some 
expression A. If B is listed, our answer is A. If not, we will be stuck calculating the areas of a vast 
number of rectangles, hopefully with a computer. Most physicists memorize many common integrals 
and keep extensive tables handy for others.  

Here are some useful integrals that will solve most physics problems.  

Powers 

∫ xn dx = x(n+1) /(n+1) 

Here, n need not be an integer, but n cannot be –1. 

∫ x–1 dx = ∫ (1/x) dx = ln(x) 

 

Trig Functions (x in radians) 

∫ sin(x) dx = – cos(x) 

∫ cos(x) dx = + sin(x) 

∫ sin2(x) dx = x/2 – sin(2x) /4 

∫ cos2(x) dx = x/2 + sin(2x) /4 

∫ sin(x) cos(x) dx = sin2(x) /2 

 

Exponentials 

∫ exp{x} dx = exp{x} 

∫ ln(x) = x ln(x) – x 

 



	  Integration	  by	  Parts	  

For any two functions u and v: 

d (uv) / dx = u dv/dx + v du/dx 

∫ [d(uv)/dx] dx = ∫ [ u dv/dx] dx + ∫ [ v du/dx] dx 

∫ d(uv) = ∫ u dv + ∫ v du 

uv – ∫ u dv =  ∫ v du 

 

 

 

   

	  


